Generalized Data Association for Multitarget Tracking in Clutter

نویسندگان

  • A. Tchamova
  • T. Semerdjiev
  • P. Konstantinova
  • Jean Dezert
چکیده

The objective of this chapter is to present an approach for target tracking in cluttered environment, which incorporates the advanced concept of generalized data (kinematics and attribute) association (GDA) to improve track maintenance performance in complicated situations (closely spaced and/or crossing targets), when kinematics data are insufficient for correct decision making. It uses Global Nearest Neighbour-like approach and Munkres algorithm to resolve the generalized association matrix. The main peculiarity consists in applying the principles of DezertSmarandache theory (DSmT) of plausible and paradoxical reasoning to model and process the utilized attribute data. The new general Dezert-Smarandache hybrid rule of combination is used to deal with particular integrity constraints associated with some elements of the free distributive lattice. The aim of the performed study is to provide coherent decision making process related to generalized data association and to improve the overall tracking performance. A comparison with the corresponding results, obtained via Dempster-Shafer theory is made. This work has been partially supported by MONT grants I-1205/02, I-1202/02 and by Center of Excellence BIS21 grant ICA1-2000-70016

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multitarget Tracking in Clutter based on Generalized Data Association: Performance Evaluation of Fusion Rules

The objective of this chapter is to present and compare different fusion rules which can be used for Generalized Data Association (GDA) for multitarget tracking (MTT) in clutter. Most of tracking methods including Target Identification (ID) or attribute information are based on classical tracking algorithms such PDAF, JPDAF, MHT, IMM, etc. and either on the Bayesian estimation and prediction of...

متن کامل

Clutter Removal in Sonar Image Target Tracking Using PHD Filter

In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...

متن کامل

Multitarget tracking with the von Mises-Fisher filter and probabilistic data association

Directional data emerge in many scientific disciplines due to the nature of the observed phenomena or the working principles of a sensor. The problem of tracking with direction-only sensors is challenging since the motion of the target typically resides either in 3D or 2D Euclidean space, while the corresponding measurements reside either on the unit sphere or the unit circle, respectively. Fur...

متن کامل

Centralized Fuzzy Data Association Algorithm of Three-sensor Multi-target Tracking System

Abstract: For improving the effect of multi-target tracking in dense target and clutter scenario, a centralized fuzzy optimal assignment algorithm (CMS-FOA) of three-sensor multi-target system is proposed. And on the base of this, a generalized probabilistic data association algorithm (CMS-FOAGPDA) based on CMS-FOA algorithm is presented. The fusion algorithm gets effective 3-tuple of measureme...

متن کامل

Concurrent Detection and Tracking for Gmti

We develop a technique for performing multitarget tracking from GMTI radar data using dynamic logic (DL). The approach is specifically designed for target-rich, high-clutter, scenarios in which state-of-the-art trackers will have impractically high computational complexity during data association. DL provides a way to perform data association without combinatorial explosion, so that the complex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016